The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development.
نویسندگان
چکیده
Phosphomannomutases (PMMs) are crucial for the glycosylation of glycoproteins. In humans, two highly conserved PMMs exist: PMM1 and PMM2. In vitro both enzymes are able to convert mannose-6-phosphate (mannose-6-P) into mannose-1-P, the key starting compound for glycan biosynthesis. However, only mutations causing a deficiency in PMM2 cause hypoglycosylation, leading to the most frequent type of the congenital disorders of glycosylation (CDG): CDG-Ia. PMM1 is as yet not associated with any disease, and its physiological role has remained unclear. We generated a mouse deficient in Pmm1 activity and documented the expression pattern of murine Pmm1 to unravel its biological role. The expression pattern suggested an involvement of Pmm1 in (neural) development and endocrine regulation. Surprisingly, Pmm1 knockout mice were viable, developed normally, and did not reveal any obvious phenotypic alteration up to adulthood. The macroscopic and microscopic anatomy of all major organs, as well as animal behavior, appeared to be normal. Likewise, lectin histochemistry did not demonstrate an altered glycosylation pattern in tissues. It is especially striking that Pmm1, despite an almost complete overlap of its expression with Pmm2, e.g., in the developing brain, is apparently unable to compensate for deficient Pmm2 activity in CDG-Ia patients. Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions.
منابع مشابه
Kinetic properties and tissular distribution of mammalian phosphomannomutase isozymes.
Human tissues contain two types of phosphomannomutase, PMM1 and PMM2. Mutations in the PMM2 gene are responsible for the most common form of carbohydrate-deficient glycoprotein syndrome [Matthijs, Schollen, Pardon, Veiga-da-Cunha, Jaeken, Cassiman and Van Schaftingen (1997) Nat. Genet. 19, 88-92]. The protein encoded by this gene has now been produced in Escherichia coli and purified to homogen...
متن کاملThe X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a.
Congenital disorder of glycosylation type 1a (CDG-1a) is a congenital disease characterized by severe defects in nervous system development. It is caused by mutations in alpha-phosphomannomutase (of which there are two isozymes, alpha-PMM1 and alpha-PPM2). Here we report the x-ray crystal structures of human alpha-PMM1 in the open conformation, with and without the bound substrate, alpha-D-mann...
متن کاملO-10: Formation and Molecular Composition of The Sperm Head to Tail Coupling Apparatus
Background According to a worldwide survey in 2010 infertility affects 48.5 million of couples. In roughly half of the cases infertility is provoked by the male mate. Thus, a significant percentage of young men are infertile but the underlying causes are mostly unknown. Male fertility and reproduction success critically depends on proper formation of the mature sperm. Transmission of the geneti...
متن کاملIsolation and Phenotyping of Normal Mouse Liver Dendritic Cells by an Improved Method
Introduction Dendritic cells (DCs) are bone marrow-derived cells, which migrate to lymphoid and non-lymphoid organs via blood. Liver DCs are believed to play an important role in the regulation of hepatic allograft acceptance. However, because of inherent difficulties in isolating adequate numbers of DCs from liver, limited information is available on the phenotype and functions of liver DCs. ...
متن کاملO-2: A Novel Antioxidant Formulation to Treat Male Infertility Emanating from Sperm Oxidative DNA Damage: Promising Preclinical Evidence from Mouse Models
Background: Sperm DNA damage (SDD) is a significant male infertility factor, yet it is not routinely diagnosed or treated in couples undertaking fertility treatment by ART. Men with this condition are likely to experience sub-fertility or infertility, expose their female partners to greater risk of miscarriage and pass on de novo sporadic DNA mutations potentially compromising the health of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 26 15 شماره
صفحات -
تاریخ انتشار 2006